Categories
All Softwares
Sublime Text VSCode Binaries Postman TeamViewer Firebase Visual Studio Code Contentful Tribe Circle Notion Datadog NewRelic Vmix Archbee Docker Desktop Bitly GitHub BitBucket Upsource Zapier Make Medium substack Facebook Amazon S3 Maya 3DS MAX Adobe Substance Airtable Roam Research Azure DevOps Retool Powerapps Appsheet 1Password Plex Emby Netflix Apple HomeKit Algolia Lightshot Confluence Toad tableau Data Studio Salesforce SAP Calendly Google photos Bloomberg Terminal BigQuery ML Google AutoML Tables Shopify BigCommerce Google Drive Redis Memcached Windows media player WhatsApp Heroku Render Looker Quizlet Google Analytics Auth0 Trello Elasticsearch Adobe Premiere Pro Zerotier Zoom Skype Docker Polypane Google Chrome Microsoft Edge Safari Gitbook Gmail Google Vertex AI Kdb+ Amplitude Google Docs Typora Roboflow ML Kit Azure Intercom Quicken YNAB Uptime Robot Figma npm TigerGraph Amazon Neptune Fivetran Okta YouTube LastPass Mailchimp Sendinblue Adobe Acrobat Pocket Reddit Onenote Shogun DaVinci Resolve UiPath Taliscale Adobe Lightroom FullStory LogRocket RescueTime Boxcryptor LaunchDarkly ArcGIS AWS SageMaker Tailscale NordVPN WooCommerce Twitter Dropbox Nagios Zabbix Prtg Google Cloud Webflow ActiveCampaign Quickbooks .Net Maui Airplane.dev Pipedream Evernote Autodesk AutoCAD HCL Connections Google Sheets Excel Rundeck Ansible Tower Salt Twilio Pastebin Zoho Unity3D GameMaker AWS Config GCP Cloud Asset inventory AWS GuardDuty Unreal Engine (UE4) Jira YouTrack Stytch Suite CRM Greynoise Photoshop LinkTree BlackBoard Zendesk Discord Rollout.io Disqus Oracle Fusion ERP Cloud Odoo Microsoft Dynamics Alfred Sophos Firewall UniFi Security Gateway Azure AD Doodle Office Online Power BI MicroStrategy Qlik Ampache Socrata Drone CI IOS WordPress IDM FDM Ninja Download Manager McAfee Google Meet WIX cPanel LucidChart HubSpot Landbot Typeform CCleaner Ecwid Spotify Stackstrom N8N Substance Painter Onshape SketchUp Canny Miro XMind Segment GoogleForms Adobe Illustrator MultiSim Proteus Prezi Slack Microsoft Teams SumSub JAWS Wetransfer Framer Microsoft 365 Telegram Threema Signal Lokalise Crowdin Phrase WolframAlpha Dataclay Templater Bot WorkOS FrontEgg Snorkel AI ZohoCRM Voicemod Chromatic Percy POEditor Transifex Microsoft Office Selenium vBulletin Xenforo Hightouch Logseq Bundlephobia Webpack Esbuild Rollup Session Berty WHMCS Stripe Billing Google Camera ImgIX Netlify Google Keep SocialPilot Hootsuite Firebase Analytics Access Manager Wordle Amazon Redshift Snowflake Microsoft Active Directory ClubHouse Tenable Nessus Obsidian Scrivener IDA Neo4j Pushbullet Pushover TinkerCAD Fusion360 SolidWorks TablePlus Cryptomator Glasswire Comodo Firewall Coyim Splunk Hungry Bring Panther IFTTT openHAB Alexa Google Home Twitch Asana IBM Watson Discovery FL Studio Ableton Google Maps Gather Aseprite Instagram Agora Wowza Docuware ELO Office Apollo GraphQL Supabase Hasura Stepzen Postgraphile Lyket.dev Kahoot Clubdesk Fairgate Bandicam Revoltchat Element Imply Pinot MongoDB Oracle Peoplesoft CurseForge Google Tag Manager MS SQL AppWrite Nhost AWS Kendra QnA Maker Apigee Google Cloud IoT Core Microsoft OneNote Amazon API Gateway Qualtrics Sprig Hotjar Sibelius Finale Dorico Snyk Common Room Orbit Toggl Track Adobe Scan Microsoft Lens CamScanner Vercel Stack Overflow Traktor Pro 3 Markup CMS Documentation Atlassian Confluence Raindrop Akeneo Salsify Informatica SuiteCRM VtigerCRM Cruise Tesla autopilot Waymo Adobe Animate Pencil2D Men&Mice Solarwinds Infoblox Device42 AWS WAF
Qdrant

Qdrant

Open Source Alternative to Algolia, Google Vertex AI
Language
Rust
Stars
23427
Watchers
23427
Forks
1612
Open Issues
376
Last Updated
5/9/2025

REAMDE.md

Qdrant

Vector Search Engine for the next generation of AI applications

Tests status OpenAPI Docs Apache 2.0 License Discord Roadmap 2025 Qdrant Cloud

Qdrant (read: quadrant) is a vector similarity search engine and vector database. It provides a production-ready service with a convenient API to store, search, and manage points—vectors with an additional payload Qdrant is tailored to extended filtering support. It makes it useful for all sorts of neural-network or semantic-based matching, faceted search, and other applications.

Qdrant is written in Rust 🦀, which makes it fast and reliable even under high load. See benchmarks.

With Qdrant, embeddings or neural network encoders can be turned into full-fledged applications for matching, searching, recommending, and much more!

Qdrant is also available as a fully managed Qdrant Cloud ⛅ including a free tier.

Quick StartClient LibrariesDemo ProjectsIntegrationsContact

Getting Started

Python

pip install qdrant-client

The python client offers a convenient way to start with Qdrant locally:

from qdrant_client import QdrantClient
qdrant = QdrantClient(":memory:") # Create in-memory Qdrant instance, for testing, CI/CD
# OR
client = QdrantClient(path="path/to/db")  # Persists changes to disk, fast prototyping

Client-Server

To experience the full power of Qdrant locally, run the container with this command:

docker run -p 6333:6333 qdrant/qdrant

Now you can connect to this with any client, including Python:

qdrant = QdrantClient("http://localhost:6333") # Connect to existing Qdrant instance

Before deploying Qdrant to production, be sure to read our installation and security guides.

Clients

Qdrant offers the following client libraries to help you integrate it into your application stack with ease:

Where do I go from here?

Demo Projects Run on Repl.it

Discover Semantic Text Search 🔍

Unlock the power of semantic embeddings with Qdrant, transcending keyword-based search to find meaningful connections in short texts. Deploy a neural search in minutes using a pre-trained neural network, and experience the future of text search. Try it online!

Explore Similar Image Search - Food Discovery 🍕

There's more to discovery than text search, especially when it comes to food. People often choose meals based on appearance rather than descriptions and ingredients. Let Qdrant help your users find their next delicious meal using visual search, even if they don't know the dish's name. Check it out!

Master Extreme Classification - E-commerce Product Categorization 📺

Enter the cutting-edge realm of extreme classification, an emerging machine learning field tackling multi-class and multi-label problems with millions of labels. Harness the potential of similarity learning models, and see how a pre-trained transformer model and Qdrant can revolutionize e-commerce product categorization. Play with it online!

More solutions
Semantic Text Search Similar Image Search Recommendations
Chat Bots Matching Engines Anomaly Detection

API

REST

Online OpenAPI 3.0 documentation is available here. OpenAPI makes it easy to generate a client for virtually any framework or programming language.

You can also download raw OpenAPI definitions.

gRPC

For faster production-tier searches, Qdrant also provides a gRPC interface. You can find gRPC documentation here.

Features

Filtering and Payload

Qdrant can attach any JSON payloads to vectors, allowing for both the storage and filtering of data based on the values in these payloads. Payload supports a wide range of data types and query conditions, including keyword matching, full-text filtering, numerical ranges, geo-locations, and more.

Filtering conditions can be combined in various ways, including should, must, and must_not clauses, ensuring that you can implement any desired business logic on top of similarity matching.

Hybrid Search with Sparse Vectors

To address the limitations of vector embeddings when searching for specific keywords, Qdrant introduces support for sparse vectors in addition to the regular dense ones.

Sparse vectors can be viewed as an generalization of BM25 or TF-IDF ranking. They enable you to harness the capabilities of transformer-based neural networks to weigh individual tokens effectively.

Vector Quantization and On-Disk Storage

Qdrant provides multiple options to make vector search cheaper and more resource-efficient. Built-in vector quantization reduces RAM usage by up to 97% and dynamically manages the trade-off between search speed and precision.

Distributed Deployment

Qdrant offers comprehensive horizontal scaling support through two key mechanisms:

  1. Size expansion via sharding and throughput enhancement via replication
  2. Zero-downtime rolling updates and seamless dynamic scaling of the collections

Highlighted Features

  • Query Planning and Payload Indexes - leverages stored payload information to optimize query execution strategy.
  • SIMD Hardware Acceleration - utilizes modern CPU x86-x64 and Neon architectures to deliver better performance.
  • Async I/O - uses io_uring to maximize disk throughput utilization even on a network-attached storage.
  • Write-Ahead Logging - ensures data persistence with update confirmation, even during power outages.

Integrations

Examples and/or documentation of Qdrant integrations:

Contacts

License

Qdrant is licensed under the Apache License, Version 2.0. View a copy of the License file.